首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   9篇
  国内免费   3篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   7篇
  2015年   11篇
  2014年   5篇
  2013年   7篇
  2012年   3篇
  2011年   4篇
  2010年   10篇
  2009年   8篇
  2008年   7篇
  2007年   9篇
  2006年   6篇
  2005年   4篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
101.
102.
采用RT-PCR技术从牛气管组织扩增出2400 bp的b1基因, 回收纯化连入PGEM-T载体, 测序。用Expasy软件对b1基因的抗原性进行分析, 选取胞外区334~861 bp的配体结合区与6×His融合, 在大肠杆菌中大规模诱导表达, 并经Ni2+亲和柱层析纯化。通过SDS-PAGE鉴定后, 应用纯化蛋白免疫新西兰家兔, 获得效价在1:12 800以上的多抗, Western blotting鉴定表明此抗体可特异性的与表达的融合蛋白作用。  相似文献   
103.
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) class of ionotropic glutamate receptors comprises four different subunits: iGluR1/iGluR2 and iGluR3/iGluR4 forming two subgroups. Three-dimensional structures have been reported only of the ligand-binding core of iGluR2. Here, we present two X-ray structures of a soluble construct of the R/G unedited flip splice variant of the ligand-binding core of iGluR4 (iGluR4i(R)-S1S2) in complex with glutamate or AMPA. Subtle, but important differences are found in the ligand-binding cavity between the two AMPA receptor subgroups at position 724 (Tyr in iGluR1/iGluR2 and Phe in iGluR3/iGluR4), which in iGluR4 may lead to displacement of a water molecule and hence points to the possibility to make subgroup specific ligands.  相似文献   
104.
105.
Abstract

Because of the significant industrial, agricultural and biotechnological importance of serine protease proteinase K, it has been extensively investigated using experimental approaches such as X-ray crystallography, site-directed mutagenesis and kinetic measurement. However, detailed aspects of enzymatic mechanism such as substrate binding, release and relevant regulation remain unstudied. Molecular dynamics (MD) simulations of the proteinase K alone and in complex with the peptide substrate AAPA were performed to investigate the effect of substrate binding on the dynamics/molecular motions of proteinase K. The results indicate that during simulations the substrate-complexed proteinase K adopt a more compact and stable conformation than the substrate-free form. Further essential dynamics (ED) analysis reveals that the major internal motions are confined within a subspace of very small dimension. Upon substrate binding, the overall flexibility of the protease is reduced; and the noticeable displacements are observed not only in substrate-binding regions but also in regions opposite the substrate-binding groove/pockets. The dynamic pockets caused by the large concerted motions are proposed to be linked to the substrate recognition, binding, orientation and product release; and the significant displacements in regions opposite the binding groove/pockets are considered to play a role in modulating the dynamics of enzyme-substrate interaction. Our simulation results complement the biochemical and structural studies, highlighting the dynamic mechanism of the functional properties of proteinase K.  相似文献   
106.
107.
108.
Novel small molecules were synthesized and evaluated as retinoic acid receptor-related orphan receptor-gamma t (RORγt) inverse agonists for the treatment of inflammatory and autoimmune diseases. A hit compound, 1, was discovered by high-throughput screening of our compound library. The structure–activity relationship (SAR) study of compound 1 showed that the introduction of a chlorine group at the 3-position of 4-cyanophenyl moiety increased the potency and a 3-methylpentane-1,5-diamide linker is favorable for the activity. The carbazole moiety of 1 was also optimized; a quinazolinedione derivative 18i suppressed the increase of IL-17A mRNA level in the lymph node of a rat model of experimental autoimmune encephalomyelitis (EAE) upon oral administration. These results indicate that the novel quinazolinedione derivatives have great potential as orally available small-molecule RORγt inverse agonists for the treatment of Th17-driven autoimmune diseases. A U-shaped bioactive conformation of this chemotype with RORγt protein was also observed.  相似文献   
109.
In this study the three-dimensional (3-D) model of the ligand-binding domain (V106-P322) of human interleukin-6 receptor (hIL-6 R) was constructed by computer-guided homology modeling technique using the crystal structure of the ligand-binding domain (K52-L251) of human growth hormone receptor (hGHR) as templet. Furthermore, the active binding region of the 3-D model of hIL-6R with the ligand (hIL-6) was predicted. In light of the structural characteristics of the active region, a hydrophobic pocket shielded by two hydrophilic residues (E115 and E505) of the region was identified by a combination of molecular modelling and the site-directed or double-site mutation of the twelve crucial residues in the ligand-binding domain of hIL-6R (V106-P322). We observed and analyzed the effects of these mutants on the spatial conformation of the pocket-like region of hIL-6 R. The results indicated that any site-directed mutation of the five Cys residues (four conservative Cys residues: Cys121, Cys132, Cys165, Cys176; near membrane Cys residue: Cys193) or each double-site mutation of the five residues in WSEWS motif of hIL-6R (V106-P322) makes the corresponding spatial conformation of the pocket region block the linkage between hIL-6 R and hIL-6. However, the influence of the site-directed mutation of Cys211 and Cys277 individually on the conformation of the pocket region benefits the interaction between hIL-6R and hIL-6. Our study suggests that the predicted hydrophobic pocket in the 3-D model of hIL-6R (V106-P322) is the critical molecular basis for the binding of hIL-6R with its ligand, and the active pocket may be used as a target for designing small hIL-6R-inhibiting molecules in our further study.  相似文献   
110.
Beside other pharmaceutical benefits, flavonoids are known for their potent α-glucosidase inhibition. In the present study, we investigated α-glucosidase inhibitory effects of structurally related 11 flavonols, among which quercetin-3-O-(3″-O-galloyl)-β-galactopyranoside (8) and quercetin 3-O-(6″-O-galloyl)-β-glucopyranoside (9) showed significant inhibition compared to the positive control, acarbose, with IC50 values of 0.97 ± 0.02 and 1.35 ± 0.06 µM, respectively. It was found that while sugar substitution to C3-OH of C ring reduced the α-glucosidase inhibitory effect, galloyl substitution to these sugar units increased it. An enzyme kinetics analysis revealed that 7 was competitive, whereas 1, 2, 8, and 9 were uncompetitive inhibitors. In the light of these findings, we performed molecular docking studies to predict their inhibition mechanisms at atomic level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号